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Introduction 

Bayen, Flato, Fronsdal, Lichnerowicz and Sternheimer introduced in ref. [ 1 ] 
the notion of a star product (deformation of associative and Lie algebra struc- 
tures on the space of C” functions on a manifold M) in order to give a precise 
mathematical definition of quantization for a classical mechanical system. The 
questions of the existence and equivalence of such star products were essentially 
studied for symplectic manifolds. Using a cohomological computation of Gutt 
[4,5], De Wilde and Lecomte in ref. [ 31 proved the existence and studied the 
equivalence for any symplectic manifold. However, for many physical problems, 
the natural structure is a Poisson manifold (for instance, for time dependent dy- 
namical systems); thus the problem of a star product on a Poisson manifold was 
introduced. For instance, in ref. [ 21, Lichnerowicz defines tangential star prod- 
ucts on regular Poisson manifolds; that notion is natural because of the following 
facts: 

( 1) The star product is an algebraical deformation of a structure of an associ- 
ative and Lie algebra on the space of Cm functions on M. Thus the natural object 
is the Poisson bracket, characteristic of the Poisson manifold structure on Mand 
not a symplectic two-form. Moreover, the deformation theory of the Lie algebra 
structure on C”(M) for the Poisson bracket is based on cohomology groups 
H” (C” (M) , a). In ref. [ 2 1, Lichnerowicz proved the existence of the tangential 
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star product on a regular Poisson manifold if H3 (C” (M), a) vanishes, which is 
the first step of such a theory of deformations. 

(2 ) From the geometrical point of view, if A4 is symplectic, the existence theo- 
rem uses heavily the cohomology classes of S> and T+ [ I] (see ref. [ 3 ] for the 
definition). These classes are canonical geometrical objects for M. But their def- 
inition requires only the structure of a regular Poisson manifold on M [ 21 and 
the natural set-up of the theory is thus the category of such manifolds. 

Finally, let us mention the thesis of Gutdira [ 61, where the existence of tan- 
gential star products is proved for a tangentially exact regular Poisson manifold; 
however, her cohomological computation is not completely correct, thus we give 
here the cohomology groups we need (proposition 6.5). 

In this article, we generalize the method used in ref. [ 31. That is, first we build 
S:, , which is a two-cocycle for the cohomology of Z-graded Lie algebras [ 91, and 
then we deduce formal deformations L, of the Poisson bracket, solution of the 
equation: 

The cocycle @> is defined in the symplectic case with the use of differential forms 
on the manifold. This is no longer possible in our context, thus we define here 
S> from contravariant tensors on M, these are the only natural objects in this 
theory. In fact because these canonical objects are all tangential, our deforma- 
tions are naturally tangential. 

In the first three sections we give definitions of graded Lie algebras and defor- 
mations, and local notation; in sections 4 and 5 we define tangential star products 
and (without proof) quote easy generalizations of some results of ref. [ 31 for 
regular Poisson manifolds. The computation of tangential Chevalley cohomology 
spaces is performed in detail in section 6; indeed the formulation of our result 
requires applications from spaces of one-forms instead of maps from spaces of 
vector fields. We define @, and study its properties in section 7. Formally our 
propositions are exactly the same as those of ref. [3] but the proofs are very 
different and we give them completely here. We prove the existence results in 
sections 8 and 9, which are completely similar to the corresponding results of ref. 
[31. 

1. Graded Lie algebras associated with a vector space 

Let V be a vector space; we denote by A”( V) the space of all (a+ I )-linear 
maps from V into V and by d”( V) the space a (A’( V) ), (Y is the antisymmetri- 
zation projector, 
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where P,+ , is the group of permutations of (0, . . . . a} and sign (a) is the signature 
of 0. We put 

./t(V)= 0 AU(V), d(V)= 0 &d”(V). 
623-l 03-i 

We define 

A:JY(V)X.M(V)+~/~Y(J’), 

AAB=i(B)A+ (- l)Ob+’ i(A)B VAE.M”( V), VBk@( V) , 

where 

i(B)A=O ifAa./?-‘( V) , 

i(B)A(xo, . . . . x,+~) = i ( - 1 )kbA(~O, . . . . B(xk, . . . . x~+~), . . . . x,+~) 
k=O 

ifAEJP( V) (a> -l), BE&“(V) . 

We also define 

It is easy to see that (A( V), A ) and (&‘( V), [ , ] ) are Z-graded Lie algebras. 
Moreover, if AE&’ ( V), then ( V, A) is an associative algebra if and only if 
AAA=O and a Lie algebra if and only ifAod’( V) and [A, A] =O. 

Proposition 1.1 [ 3 1. Let (E, 0 ) be a Z-graded Lie algebra, E = O,,zE”. I~AE E’ is 
such that A.A=O then a,:E+E, BeEb-+ (- 1 )bAoB, is a homogeneous map with 
degree I satisfying 

~/,~r3,=O,a,(B~C)=(-l)‘(~,B).C+B~(6’,,,C), VBEE, VCeEC. 

Thus, 0 induces on the cohomology space H( E, a,) = ker a,,/Im a,,, a Z-graded Lie 
algebra structure. 

2. Formal deformation 

(a) Let Vbe a vector space. We denote by V, the space of all formal series 

X”= C UiXi, XiEV. 
i20 

Definition. An element A, of .Ma( V,) isformal if it has the form 
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where A+P( V). 

A, is called the rth component of A,; this can be written A,,= Ciao viAi, so A, is 
identified with an element of (A( V) ),. It is also easy to see that Jt ( V) v [ respec- 
tively -cll( V),,] is a graded Lie sub-algebra of (.k( VU), n ) [respectively 
d(V”),[ 3 I)]- 

(b) Let ( V, A) be an associative or a Lie algebra. 

Definition 
( 1) A formal deformation A,, of A is an associative or Lie algebra structure on 

V,, such that A,, is formal and A0 = A. 
(2) Let us write o for A or [ , 1. Afirmal deformation of order k of ( I’, A) is a 

formal A,, such that Ao=A and C;+j=, A,oA,=O VI< k. 

Proposition 2.1 [ 31. A bilinearformal map A,,= Ci,o v’Ai is a formal deformation 
of order k ofAo if and only if 

2a.,,Ai=Jj Qi<k, J;= 
r+rCrs>O AroAs; , I 

in this case we have a.,,, Jk+, = 0. 

(c) Definition. Two formal deformations A, and A: of ( V, A) are said to be 
formally equivalent if and only if there exists 

T,= ;Fo v’Ti~.Mo( V), 

such that To = 1 and Al = T t (A,), where 

T:(A,) (x,,Y~) =T,(A,U’,’ W> T,‘(Y”) 1) . 

They are said to be formally equivalent up to order k if and only if the components 
of Tz(A,) and A: are equal up to order k. 

3. Local maps and symbols 

In the sequel of this article, M denotes a smooth connected and second count- 
able manifold. Let E and F be two vector bundles on M, we denote by r(E) and 
r(F) the space of smooth sections of E and F, respectively. 
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Definition [ 7 1. A multilinear map C: f(E)‘+ ’ -+r( F) is local if and only if 

SUPP CC%, a*., Sc)C f7 SUppSi VS()y . ..yScET(E) 3 
i=O 

where supp s is the support of s. 

It is well known [ 71 that locally C is a multilinear differential operator. So, for 
any relatively compact domain U of a chart on M, and for any local coordinates 
(x’, . ..) x”) on U, if we give trivializations of E and F over U, we can write 

C(so, *..> &),.I.= ~4Y,,...,,Je?~o, .a*, W&l 9 vso..., ScEJ-(E) , 

where Sj is the local form Of Si and where A,,.,,,,,,, is a (c+ 1 )-linear map from Eo, 
the typical fiber of E, into F,, the typical fiber of F. Moreover, the sum is finite. 

Definition [ 7 1. A local map is said to be k-differentiable if and only if its restric- 
tion to any domain of a natural chart is given by a multidifferential operator of 
maximal order k in each argument. It is said to be differentiable if and only if it is 
k-differentiable for some integer k. 

It is also well known [ 71 that, if C is differentiable and has total order 
s=supC~=, 1 (Yi 1 such that A,,,...,,, # 0 on some U, then 

e(To, . . . . cc> = c (To)*“... (&)“%o,....cx-,x, ZETA, 
I~ol+-+l~cl=~ 

is an intrinsically defined map called the total symbol of C, and if (ro, . . . . rC) is 
the maximum in the lexicographical order of the (c+ 1 )-tuples ( I a0 1, . . . . 
such that 1 a0 I + ..a + I (Y, I =s and A,,....,, # 0 on U, then 

era, .-., c-1 = (to)““-(G)“‘&, ,.... ac.s , T= 
a, r, 

is an intrinsically defined map called the lexicographical symbol of C, and ( 
rC) is called the lexicographical order of C. 

4. Tangential star products and tangential formal deformations of (N, P) 

IQJYCI) 

ro, . . . . 

Suppose now that M is Poisson manifold, so it is provided with a structure 
tensor/i (cf. ref. [ 21 for definitions and notations). We denote by N the source 
of all smooth functions over M. The Poisson bracket on N is defined by 

[u, v]=P(u, v)=/i(du, dv) VU, EN. 

N is an associative algebra for the usual multiplication m : (u, V) + uu and a Lie 
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algebra for P. We denote by 1 the centre of this Lie algebra. The elements of I are 
functionsJsuch that 

{U,f}‘O VUEN. 

It can be written as 

H,,f=O VUEN, 

where H, is the Hamiltonian vector field associated with u (cf. ref. [ 21); such an 
fwill be called an invariant. 

Definition [ 3 1. A weak star product is a formal deformation of m, 

M,=m+vP+ C vkMk, 
k>2 

such that 
(i) Mk(U, ~)=(-l)~M~(u, U) Vu, ZEN, 

(ii) Mk iS hxd, 

(iii) Mk is nc (vanishing on constants) if k is odd. 
It will be said to be a star product if Mk is nc for each k> 1. 

In the sequel of this note we suppose that (M, /i ) is regular and we denote by 2p 
the dimension of leaves and by q their codimension. We provide M [2] with an 
atlas of natural charts such that the only nonvanishing components of/i are 

/ii.i+p- /ii+p,i= 1 -- , iE{l, . . ..p}. 

Definition [ 2 1. Let r be a connection without torsion on M, and let us consider 
the corresponding connection one-form U; =rj&dXk. r is said to be adapted to 
the leaves if and only ifrzk=O Va>2p, Vi62p. 

Let Pbe the covariant derivative associated with r, and let C be a local (r+ l)- 
linear map from N into N, so for any relatively compact domain U of a chart in 
M there exists a family of contravariant tensors 

T ko,...,k, , 

symmetric in their arguments k0 + em* + ki+j ( 1 <j< ki+ , ), such that 

Definition [ 21. C is said to be tangential if and only if all the tensors Tko,...,k, are 
tangential. 
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Remark [ 21. This definition is independent of the choice of R 

Let E and F be two vector bundles on M with typical fibers E0 and F,, having two 
bases (ei)iE, and (&)jsh and let C be a local (r+ 1 )-linear map from T(E) into 
r(F), so that there exists a family of (r+ 1 )-linear maps ( C’j)j,, from r(E) into 
N such that 

C(so, . . . . s,)= C C’(S,, . . . . s~)A (JO finite) , VS~, . . . . s,~r(E) . 
jeJ0 

If for iO, . . . . i,EI we put 

then 

Cjo.““ir(~o, . . . . U~)=C’(Uoeio, . . . . u,ei,) VU~, . . . . u,EN, 

C(so, ..-, sr) = c C C~..~v’r(S$, . . . . Sk)J, if Sk= C Sj..Fei, . 
jsJo ioelo,....iraIr iksfk 

Definition. C is said to be tangential if and only if VjeJ and ViO, . . . . i,EI, C~--ir 
is tangential. 

Definition [2]. A Poisson connection is a connection without torsion such that 
VA=O. 

Remark [ 21. Every Poisson connection is adapted to the leaves. 

Definition. Let Aa be a tangential two-linear map from N into N defining on Nan 
associative or Lie algebra structure. A formal deformation 

A,= c VkAk 
k,O 

of A0 is said to be tangential if and only if Ak is tangential for each k. 

If M,,= C&o ukMk is a weak star product, then P,= C&o vkMzk+, is a formal de- 
formation of P, we say that P, derives from M,. 

Using the same argument as in the symplectic case [ 3 ] we obtain 

Lemma 4.1. Let A EM,‘,,,(N); then 
(i) mAA is nc ifand only ifA=A’ +am, whereA’EM,‘,,,,,(N) and aEN; 

(ii) PAA=OifandonlyifA=am, whereaEI. 0 
As in the symplectic case [ 3 1, we deduce the following two propositions: 

Proposition 4.2. Every tangential weak star product is formally equivalent to a 
tangential star product. 0 
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Proposition 4.3. A tangential formal deformation of P cannot derive from several 
tangential star products: the map 

Mu= k& VkMk+ k& VkMx+ I 
, 

is injective. El 

5. Tangential Hochschild cohomology of (iV, m) and the term M2 of a tangential 
star product 

The Hochschild cohomology operator on (iV, m ) is defined by 6A= 
( - 1 )“m AA VAEAO (N). It is clear that the graded subspace J&,,,(N) of all tan- 
gential elements of d(N) is stable under 6. We denote by H,(N, 6) the coho- 
mology group corresponding to this subspace. 

Proposition 5.1 [ 21. For k= 2 or 3 the space Hf‘( N, 6) is isomorphic to the space 
of all tangential contravariant skew-symmetric tensors on M. 0 

Let r be a Poisson connection and denote by P the covariant derivative associ- 
ated with r. We define the two-differential map Pf- by 

P;(u, v)/“=ni’k~j”v~i.juvk,,v, VU, VEN. 

Proposition 5.2 [ 2 1. The term Mz of a tangential star product M, of order >, 2 has 
the form 

Mz = tP;+GT, TEMP!,,JN) . 

Since (Y(PAM~)=O, PAM, is a coboundary, thus there exists M3 such that 
m + VP+ v2M2 + v3M3 is a tangential star product of order 3. To obtain the term of 
order 4 it is necessary that (Y(PAM~ +Mz AM,) =O, thus [P, M3] =O, and Mj is 
a cocycle for the tangential Chevalley cohomology of (N, P). q 

6. Tangential Chevalley cohomology of (N, P) 

Given two vector spaces E, F we denote by K(E, F) the space of all r-linear 
alternating maps from E into F and we write 

A(E,F)= @ A’(E,F) . 
r20 

We denote by H(M) the space of all smooth vector fields over M and by H,(M) 
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the subspace of tangential elements of H(M). The space of smooth r-forms is 
denoted by A’(M) and we write 

A(M)= 0 nr(M). 
t-30 

The Chevalley coboundary operator d of the adjoint representation of (N, P) is 

aA= (- i y[P,,4] VAE~Q”(N) . 

It stabilizes the spaces A&,,,,,, (N) (the space of tangential local maps vanishing 
on the constants from N into N). We denote by H,,,,,,,,( N, a ) the corresponding 
cohomology. 

In order to compute the first two groups of this cohomology, we exhibit some 
particular cocycles, following the same way as in the symplectic case. The two- 
tensor .4 defines a morphism 

p:A ’ (M) +H(M) ) 

which extends naturally to a map from A (H(M) , A (M) ) into A (A ’ (A!), A (M) ) . 
We define the map 

p*:NA’ (ML N)-+d,,(N) , 

p*n&h ..-, u,-,)=T(du,, . . . . du,-,) VTEA’(A’(M), N) , 
and we write p* =p*op’ , where p’ is the restriction of p to A (H(M), N). The Lie 
derivative on the space of smooth forms A(M) of M is a representation of 
(H(M), [ , ] ). The corresponding differential is denoted by d’ . 

Proposition 6.1 [ 3 1. 

p*oa'(c)=a.j.i*(c) vcd(ff(M),zv). 0 

Proposition 6.2. For any XEH,(M) there exists OEA’ (Ad) such that X=p(w). 

Proof: Let (U, x’, . . . . x”) and (U’, y’, . . . . y” ) be two natural charts of M such 
that Un U’ ~8. If 

then we write 

CO”= i$, ( - 1 )xp(i)+‘Xs(i) dx’ ) 

WV = $, (- 1 )*(i)+‘Xl(i) dy’) 
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where xP is the characteristic function of { 1, . . . . p}ands(i)=i+pififp,s(i)=i-p 
ifi>p.Theyaredefinedon Uand U’ andp(oU)=X,Uandp(wU)=X,U,.More- 
over, if dy’= Cll, f;,j dx’ over Un u’, then from the relations 

;$, xi &IT’= i$, Xi dY’ 3 

j$, ( _ 1 >xP”‘I;-.~&~) z/i (dy”, dy’) = 
I 

( - l;&(k) if ‘=‘(? ’ otherwlse, 

on UnU’,k,rE{l,..., 2p}, we deduce that ou=ou~ on Un u’. 0 

We put B=p(A (H(M), A(M) ) ) and we define on lE8 a cohomology operator 
13” by 

VT& if T=p(C) then a”T=p(d’C) . 

This definition is independent of the choice of C. We denote by Aloc,,,n, (A’ (M), 
A (M) ) the space of all tangential multilinear maps from A ’ (M) into A (M) van- 
ishing on the “transversal” forms, the elements of T *A4 vanishing on H, (A!). 

Proposition 6.3. 
0) A loc.,.nt (A ’ (W > A w 1 = b 

09 4,,.,.,, (NJ =p* (&c.t.nt (A ’ ( w > N) 1. 

Proof: 
(i > Let TEA 6c.t.nt (A ’ (M), ,4 (M) ) . Since T is nt, the map C defined by 

C(X,, . ..) x,-,) = 
I 

T(ooy -**’ 
0,-1) if Vi,xjEH,(M),p(o;)=Xi, 

0 , if one of A’; is in a chosen supplementary of H, (M) , 

is well defined, and T=p ( C) . 
(ii) We denote by I/, the space of all exact one-forms on A& by V, the space of 

all transversal one-forms on A4 and by V, a supplementary of T/, + V, in A ’ (A!). 
Let C be in J&,~,,,“~ (N). We define Tby 

Vu,, . . ..w-I)= 
I 

au,, a**, u,-1) ifVi,wi=dui, 
o ifOneOfQEV2+V3. 

This construction is possible because if du is transversal then u~lso C( U, . ..) =O. 
It is clear that TEA loc,t,nt(~‘WL~) anO(T)=C. 0 

Let r be a linear connection without torsion. We denote by r the covariant 
derivative associated with r and by L,J its Lie derivative in the direction of X. 
We consider the map 
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c&:H(M) xH(M)-wP(M) ) 

(&JJ+[(Yo~ Y,)~ttr(L,P(Y,)L,,~(Y,)-L,~(Y,)L,,~(Y,))l, 
and we define the local map S; by 

S~(u,v)=(n,~(~~)(du,dv)) VU,VEN. 

Finally we consider Tr:H(M)3-,Ndefined by 

G-(X, YJ)= ~,~~=trA~{[A’(Y),A’(z)If3R(X, VI, 1 1 
where A ‘is the map X-, [ Y+ FxY] and R is the curvature tensor of r. S means 
sum over all cyclic permutations. 

Proposition 6.4 [ 2,5,8]. 
(i) @,- is a non-exact cocycle for a’; moreover, its cohomology class is indepen- 

dent of r. 
(ii) S; is a non-exact cocycle for d; moreover its cohomology class is indepen- 

dent ofr. 
(iii) If r is adapted to the leaves then p( Qr), S& p( T,-) and T:= ,a* ( T,-) are 

tangential. 0 

We denote by L, the subalgebra of H, (M) of all vector fields X on M such that 
LX/i = 0 and by L* the subalgebra of all Hamiltonian vector fields and we write 
L,=LQLs. 

Proposition 6.5. Let r be a linear connection without torsion adapted to the leaves. 
Then 

(i) Every disf eren la t ’ 61 e one-cocycle is one-differentiable. 
(ii) Every tangential dgferentiable two-cocycle C has the form 

C=aSj-+C, +aB, aEI, C, EZ:-diff,t,nc(N, a), BELtiziff.t,n,-(N) . 

(iii) Every tangential differentiable three-cocycle C has the form 
C=S:ALX+aTF+C,+aB, 

ProoJ The proof uses the classical method of symbolic calculus of ref. [ 41. First 
we remark that the symbol of a tangential, differentiable cochain is a polynomial 
function of the variables L$, j< 2p, where 
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From the result of ref. [ 81, we deduce directly that, up to a correction by a tan- 
gential differentiable coboundary, each tangential differentiable cocycle has a 
symbol of the following form: the product of a polynomial function of A(&, 4) 
by a polynomial function of the variables &, with degree less than or equal to 1. 

Now, the proof follows exactly the proof of ref. [ 51 in the symplectic case. 
If the order of a two-cocycle is (3,3), its symbol coincides with the symbol of 

US; with ~1. If that order is (2,2), its symbol is the symbol of a coboundary of 
a tangential, differentiable, nc cochain. 

Moreover, if the order of a three-cocycle is (3,3,1), its symbol is the symbol of 
$-AL,,-, where X is in L,, and if that order is (2,2,2), then either the symbol of 
our cocycle is the symbol of a coboundary or T; is a cocycle and the symbol is 
the symbol of aT+ with ~1. 

Finally, in each other possible case, the symbol of a three-cocycle coincides 
with the symbol of a coboundary of a tangential, differentiable, nc cochain. q 

Proposition 6.6. Fork< 3, 

ProoJ The proof of this proposition is very similar to the arguments in the sym- 
plectic case given in ref. [ 41. 0 

Proposition 6.7. 

Zk,.,,,,(N ~)=P*(ZC;,,,,,,,(A’(M),N)) fork<3. 0 

7. The maps 63: 

Let us denote by z: .c&,,,, (N) +AIOC (A’ (M) , N) an arbitrary right inverse of p* 
over&(/i’(M), N). Let U,x’, . . . . x” be a natural chart of M, and let us consider 
the two-form defined on U by 

FU= i d$/,&y'+P. 
i=l 

Since Fu is closed there exists a one-form wU on U such that daU= FU. We define 
the map 
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The definition makes sense because 63: (A, B) does not depend on the choice of 
ov in U. 

Proposition 7.1. VAEI&,,(N), VBE~P,,,,(N), VCE~&,,,,(N) 

0) CIM m~~~,:,‘(~) 3 

(ii) sS,(A,B)=(-l)“b+‘~fl(B,A)) 

(iii) s (-l)“‘(s:*([A,Bl,C)-[A,8:,(B,C)l)=O. a.6.c 
cl 

We construct from 0: the operator 

or:4,,.“,(N)~~~,“,(N),A~9:,(A,P) * 

Proposition 7.2. Let (U, x’, . . . . x”) be a natural chart of M and let o be a one- 
form on Usuch that do=Fv. Then 

0) VueN [P(O), %I =%wjr, -ff,, , ff,, =p(du) . 
(ii) Z~TEB~A~(A’(M), N) and T=p*(C), then 

L,,,,p*(T)=p*(p(L,,,,C))-cp*(T). 
(iii) L ,,(w&AfL W = -Fv(K,, Hu> = -A(du, du) vu, EN. 

(iv) L p~w~Oa=ao~p~w~ -a. 

ProoJ 
(i ) For every X tangent to the leaves, 

Fv(f&w X)=-d(p(o)u)(X)=-L,,,,du.(X)=L,,,,i(H,,)F,.(X) 

=Fv( [P(O), &I, X) +Lp~w&OL JO > 
L p(o)Fv=di(p(w))F~=F~. 

Since every vector field occurring in this relation is tangent to the leaves, we de- 
duce the formula. 

(ii) Follows immediately from (i). 
(iii) Observe that L,,,,A = -P. 0 

Proposition 7.3. Let 5 be a right inverse ofp* such that 

~(4,,.,.nc(~) ) =4oc,t.nt(~ l (ML NJ 3 
and let (U, x’, . . . . x”) be a natural chart of M and o a one-form on U such that 
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do= F,. Then 

D’A= - (a+ 1 )A+p*i(o) (8”7-7d)A VAEd;,,,,,“,(N) . 

proof: ~~~JGJc,,,,c(~), 
D’A=p*i(o)r[A, P] + [p*i(o)rA, P] - [A,p*i(o)zP] , 

since rP=Aandp*i(~~~)rP=L,~,,. Then 

D’A = (J&o) -ap*i(o)r-p*i(o)ra)A 

=p*i(w) (anr-rd)A+ (Lptwj -p*d”i(o)7-p*i(w)d”7)p*(rA4), 

But if rA=p(C) then 

(47(o) -p*a”i(O)7-p*i(w)a”r)(p*(ZA)) 

=P*~P(Lp(w~ C-8’i(p(w))C-i(p(o))a’T)- (a+ 1)A 

=-(a+l)A. 0 

Proposition 7.4. There exists a right inverse 7: z&,,,,,,(N) +Aloc,,,nt (A ’ (M), IV) of 
p* such that 

(i) 70p*= 1 on T(M), the space of all antisymmetric contravariant tensors on 
M; 

(ii) p*i(u) (a”7-78) =0 on ZP,,,,,,,(& a)forp,<3 and&,,,,,(N a); 
(iii)p*i(o)(a”r-ra)=-1 onIS;andS>AL,. 

ProoJ For p= 1 or p> 3 we decompose .GX$~&,(N) as follows: 

~~~:.,,(N)=p*(T,(M))~p*(a"E)~,p*(F) 3 

where 

p*(B~(M))~p*(a~E)=p*(BP,,,,,,(/I'(M),N)), 

and where I&(M) is the space of all tangential tensors on M and BP(M) is 
~3 ” ( T f- ’ (M) ) . We consider 

v, a right inverse of p* : E-p* (E), 
O, a right inverse of a:p*(E)+a(p*(E)), 
72, a right inverse of p* : F-p* (F). 

For p=2 or 3 we replace p*(F) by IS@p*(F’) or (S;ALs)@p*(F’), and we 
choose 72 such that 

~2sz(G-)=(~,P(@r))~ 
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We define T by 
(i) therightinverseofp*:T,(M)+p*(T,(M)) onp*(T,(M)), 

(ii) 6”‘oy/ooonp*(d”E), 
(iii) T2 onP*(F). 0 

Remark. The above constructed 7 is onto, thus it satisfies the hypothesis of prop- 
osition 7.3. 

Proposition 7.5. For D’, the following identities hold: 

(1) 
(2) 
(3) 
(4) 
(5) 
(6) 
(7) 

07) 

ma=aoD=-a, 
D’+k=o On Bf&,,,,(N, a), 
D’+ 1 =O On Z,k,,,,,(N, a), 
(DT+2)(D’+3)=0 on Z:,c,,,,,W, a>, 
(W-3) (D’+4) =O on Z&,,,,(N a>, 
(D’+ 1 )2=0 on L&!,C,l,nC(N)l 
(DT+2)2(DT+3)=0 on JG’~,,,,,,~,(N), 

(DT+2J2=0 on di-di~,t,~~(N)~ 
(D’+3)2(D’+4)=0 on &&,,,,,(N), 
(DT+3)2=0 on ti:-div,l,nc(N)* 

8. Existence of tangential formal deformations of (N, P) 

Let us define D,: N,+N,, 

c VkUk+ c kVk-'Uk. 
ka0 kal 

The same arguments as in ref. [ 3 ] prove: 

Proposition 8.1. The equation 

(vD,+l)L,+t8:,(L,,L,)=O 

admits a unique solution L, such that 

Lo=P, 

L, =p*(T)+aE, T~Z:,&WO, N) n T,(M) , 
Ed!,P,.,,n,W) 3 

L2=-$(l+D’)@fl(L,, L,)+aS;, ael. 

(a) This solution is a tangential formal deformation of (N, P). 
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(b) Ifa= 0 and E= 0 this deformation is one-differentiable. 
(c) IfL,=O then Qk, LZk+, =O, and L: = C,,O vkLZk is the unique solution of 

(2vD,+ I)L:,+fB:,(L:, Li,)=O, 

Lb=P, L; =aSj-. 0 

As in the symplectic case we introduce multiparametric deformations and we 
deduce the following proposition. 

Proposition 8.2 [ 31. Every tangentialformal deformation of order k>, 0 of (N, P) 
extends to a tangential formal deformation of (N, P). 0 

9. Existence of tangential star products on a regular Poisson manifold 

From the study of the star product on a symplectic manifold we easily deduce 
that the term M, of a tangential star product has the form 

$,S;+p*(T)+aE, TEZ:,,,~(A(A’(M),N))~T,(M), 

E~&w,t,nc(N) . 

Proposition 9.1. A tangential formal deformation L, = CkaO v”Lk of (N, P) de- 
rives from a tangential weak star product if and only if 

L, = ;S$+~*(T)+I~E, TEZ~,,,(A(A’(M),N))~T,(M), 

E-‘i!x,c,ncW) . 

Proof The form of the term I’M~ of a tangential star product and that of a tangen- 
tial two-cocycle being known, the proof of this proposition is identical to the sym- 
plectic case treated in ref. [ 3 1. 0 

Proposition 9.2 [ 3 1. Every tangential star product or tangential weak star product 
of order 2k is the driver of a tangential star product or a tangential weak star 
product. cl 

It is a pleasure to thank D. Arnal for his constant interest in our work and for 
many fruitful discussions. We also thank P. Lecomte for illuminating exchanges 
of views on the subject. 
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